Other oxoanions which have been examined are perchlorates²²¹⁻²²⁵, molybdates and tungstates²²⁰⁻²³⁴, perrhenates²³⁵⁻²³⁸, permanganates²³⁹⁻²⁴¹, pertechnates²⁴²⁻²⁴³, chromates(V)²⁴⁴⁻²⁴⁶, chromates(VI)²⁴⁷⁻²⁴⁸, selenates (refs. 249, 250) and garnets²⁵¹⁻²⁵⁴.

The vibrational spectra of several ammonium²⁵⁵⁻²⁵⁹ and phosphonium (refs. 260-263) salts have been examined, and deuteration studies have been used to classify the lattice modes into translatory and rotatory modes.

Tetrahedral²⁶⁴⁻²⁷¹ and square planar²⁷² tetrahalo salts have been examined together with borohydride salts²⁷³ and silicates²⁷⁴.

The following tetracoordinate species have been examined: the tetracyanonickelate(II) ion^{2.75}, tetracyanoethylene^{2.76}–2.78, trans-bis(dimethylsulphide)dibromoplatinum(II)^{2.79}; tetrakis(thioacetamide)copper(I) chloride^{2.80} and tetrakis(thioacetamide)copper(I) dichloride^{2.80}

F. Hexa-atomic and 5-coordinate species

The gas phase Raman spectra of the pentachlorides and pentabromides of Sb, Nb, Ta and Mo are consistent with the presence of trigonal bipyramidal species²⁸¹. In the solid state TaX₅, NbX₅ and MoCl₅ exist as M_2X_{10} dimers²⁸². Solid NbF₅ and SbF₅ consist of cis-F-bridged polymers²⁸³, whilst matrix-isolated SbF₅ is reported as being of C_4 , point group²⁸⁴. Solid SbCl₅ exists in two modifications, the spectrum of the high-temperature phase resembling that of the liquid (refs. 285, 286). The vibrational spectra of crystalline hydrazine^{287–289} are consistent with a C_2^2 space group, while the spectra of liquid tetrafluorohydrazine

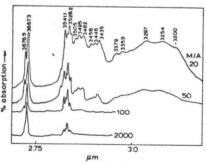


Fig. 5. OH stretching mode of CH₃OH in argon at various concentrations. (Reproduced from A. J. Barnes and H. E. Hallam, *Trans. Faraday Soc.*, 66 (1970) 1920.)

J. Mol. Structure, 10 (1971) 1-30

EFFECT OF PHASE AND PRESSURE ON VIBRATIONAL SPECTRA indicate the presence of both the *trans* and the *gauche* isomers²⁹⁰⁻²⁹².

The infrared and Raman spectra of B_2Cl_4 and B_2F_4 suggest a staggered D_{2d} configuration in the gaseous²⁹³ and liquid²⁹⁴ states, whilst B_2Cl_4 possesses the planar D_{2h} configuration in the solid state²⁹³. Oxalyl chloride²⁹⁵ is reported to have C_{2h} site symmetry whilst glyoxal²⁹⁶ has a C_4 site symmetry. The low temperature modification of acetonitrile has either the D_{2h}^1 or D_{2h}^9 space groups²⁹⁷, whilst trifluoroacetonitrile has a C_3 site symmetry and a C_2 , factor group ²⁹⁸.

The infrared spectrum of matrix-isolated methanol monomer has been obtained. Concentration studies resulted in the identification of the open chain dimer, trimer and tetramer species 299 (Fig. 5). The infrared spectrum of the high temperature phase of crystalline methanethiol indicates an orthorhombic unit cell containing eight molecules 300 . The site symmetry in crystalline carbonyl cyanide is reported to be either C_4 or C_2 in a C_2 , lattice 301 . The infrared and Raman spectra of crystalline HReO₄ are consistent with the C_3 , structure HOReO₃. Aqueous solutions ($\leq 80\,^{\circ}_{-0}$) contain only the ReO₄ anion 302 .

Deuteration studies have been used to classify the lattice modes of solid ethylene³⁰³⁻³⁰⁵. The single crystal Raman spectrum of the five coordinate species bis(trimethylamine)trichloroindium(III) has been reported³⁰⁵.

G. Species with seven or more atoms

The Raman spectra of XeF_6 have been studied in the gaseous, liquid and solid states³⁰⁷. The results indicate that either the ground state vapour phase molecules possess a symmetry lower than O_6 or they have some very unusual electronic properties that markedly influence the vibrational spectrum.

The vibrational spectra of polycrystalline UF₆ indicate a D_{4h} site symmetry (ref. 308). The infrared spectra of crystalline^{3.09} CrF₆, MoF₆, and OsF₆ also indicate a distortion of the regular octahedral structure found in the vapour phase.

The Raman spectrum of solid SF₆ shows a splitting of all three fundamentals into a number of components³¹⁰. Comparison with previous infrared data indicates that a centre of symmetry is maintained at the site. There are substantial differences between the solution³¹¹ and solid state³¹² Raman frequencies of WCl₆.

The vibrational spectra of a variety of hexahalometallates have been reported (refs. 313-320.) Splittings of several of the fundamental bands have been observed in the solid state spectra.

in the solid state spectra.

The infrared ³²¹⁻³²³ and Raman ³²⁴⁻³²⁶ spectra of single crystals of sodium nitroprusside have been reported and assigned. Other hexacoordinate salts which have been studied have been hexanitro salts ³²⁷ and ruthenium nitrosopentahalides (ref. 328).

The Raman spectrum of sulphur vapour ¹²⁹ at 180 °C indicates the presence of the S₆, S₇ and S₈ species. The Raman spectra of polycrystalline ^{329,330} and single crystal ³³¹ samples of rhombic sulphur show site and factor group splitting of the fundamental bands. The Raman spectrum of solid Si₂Cl₆ displays five of the

J. Mol. Structure, 10 (1971) 1-30